
1

An Approach to Automatic KBS Construction From Reusable
Domain-specific Components

 Yasser Abdelhamid, Hesham Hassan, Ahmed Rafea
 Central Laboratory for Agricultural Expert Systems

{Yasser, Hesham, Rafea} @esic.claes.sci.eg

 Abstract

The demand for high quality, large scale knowledge based systems has increased to
the point where great improvements in knowledge engineering technology are
needed. Library based approach for knowledge reuse is one of the widely exploited
approaches, but there are two obstacles to this approach: the indexing problem, and
the configuration problem. The real cause of these problems is the high level of
abstraction employed to the library components. In this paper, we propose an
approach to overcome these problems by building domain-specific knowledge
components libraries, and automating the process of building knowledge based
systems.

I Introduction
Many approaches have been exploited
for accelerating the process of building
KB systems, some of these approaches
were concentrating on the portability of
ontologies, so that it can be reused over
a wide range of domains e.g. KACTUS
[1]. Some other approaches were
focusing on constructing a library of
problem solving methods, that is
somehow, generic enough to be reused
in different applications e.g. Generic
Tasks [2,3], Components of Expertise
[4], CommonKADS [5]. Another
approach was to build a complete
framework for building knowledge
based systems from generic library
components e.g. PROTEGE-II[6,7].

Reusability is not a new term in the
field of software engineering, it has
been used long ago to promote the
productivity of software developers.
The same approach has been applied to
knowledge engineering, since KBS
developers often duplicate work on
similar systems.

The cost of building software from
reusable components should not exceed
that of building the system from
scratch. Actually the cost of building a
software system from reusable
components is the cost of locating the
most appropriate reusable software
component for the current application,
according to certain criteria that is
application dependent, and the cost of
fitting selected components together so
that the output of one component
matches the input of another.
Knowledge engineering researchers
used to refer to the former by the

refer to the latter by the

To build a library of reusable
components, one should decide on
what is the right granule size of a
component. There are three criteria that
can be used in evaluating the efficiency
of a library, the component reusability
range, the component selection cost,

2

and the configuration cost. On one
hand, as the granule size of a reusable
component grows, its reusability range
shrinks, the selection cost, and the
configuration cost decreases. On the
other hand, as the component size
becomes smaller, the range of its reuse
becomes wider, but both the selection
cost and the configuration cost
becomes higher.

This work addresses the possibility, and
feasibility of building knowledge based
systems out of reusable, domain-
specific library of knowledge
components. For convenience, we shall
stick to the terminology provided by
CommonKADS [4] for referring to
different types of knowledge.

II Anatomy of KBSs
There are many knowledge component
types that constitute a KBS. As defined
by CommonKADS, there are three
types of knowledge: domain
knowledge, inference knowledge, and

task knowledge.
Fig. 1 displays the internal structure of
a KBS, and the interdependencies
between each of its components.

Domain knowledge is structured
internally into two layers: domain
ontology layer, and domain models
layer. Domain ontology layer is the
most fundamental part of a KBS, and it
includes domain concepts declarations,
and domain relations which are built on
top of the declared concepts, in the
form of rules, tables, mathematical
functions, object hierarchies,
constraints, or any other representation.
Domain models are built on top of
domain relations, each domain model
points to a selected set of domain
relations, which together represent the
function defined by the domain model.

Inferences are built on top of the
domain knowledge layer. The basic
constituents of an inference are input
roles, and output roles. Input roles are
classified internally into dynamic input

 • R u l e s .
 • T a b l e s .
 • M a t h e m a t i c a l f u n c t i o n s .
 • C o n s t r a i n t s .
 • O b j e c t h i e r a r c h i e s .
 • O t h e r r e p r e s e n t a t i o n s

 • R u l e i n t e r p r e t e r .
 • T a b l e L o o k u p .
 • M a t h e m a t i c a l f u n c t i o n S o l v e r .
 • C o n s t r a i n t s s a t i s f a c t i o n p r o b l e m s o l v e r .
 • H i e r a r c h y n a v i g a t o r .
 • O t h e r i n f e r e n c e m e t h o d s

D o m a i n - s p e c i f i c
T a s k

D o m a i n - s p e c i f i c
I n f e r e n c e s

T r a n s f e r T a s k s

C o n t r o l
s t r u c t u r e

D o m a i n
M o d e l s

D o m a i n r e l a t i o n s I n f e r e n c e M e c h a n i s m s

I n p u t
T r a n s f e r t a s k

O u t p u t
T r a n s f e r t a s k

I n p u t
U s e r - i n t e r f a c e

D i a l o g u e

O u t p u t
U s e r - i n t e r f a c e

D i a l o g u e

 • C o n c e p t s .
 • P r o p e r t i e s .
 • F a c e t s .
 • L e g a l v a l u e s

D a t a b a s e

F i g . 1 T y p e s o f k n o w l e d g e

C o n s i s t s

I s - a

C a l l sC a l l sF e e d s

W o r k o n

U s e

P o i n t t o

U s e

L i n k e d t o

3

roles, and static input roles. Static input
roles are merely domain models that are
used to derive values of output roles,
given the values of dynamic input roles.

Tasks are control structures over
transfer tasks and inferences. Transfer
tasks are either input transfer tasks or
output transfer tasks. Input transfer
tasks call user interface modules that
acquire input from the user, and update
the working memory with the acquired
data. Output transfer tasks, send output
data to output user interface modules
that display the output to the user in the
appropriate form.

External agents like databases, are
interfaced through the declaration of its
structure in the knowledge base.

III Reusability
This section discusses different levels of
reusability that one KBS component
type can provide, then we investigate
each component type with regard to its
reusability capabilities.

 III-1 Reusability Levels
To talk about knowledge reuse we
should first put highlights on what to be
reused, and then we should specify how
this reuse would take place. Not all
types of knowledge are reusable at the
same level, there is always a limitation
on the reusability range of a knowledge

beyond this range. This range of
reusability depends on the knowledge
components nature,

As illustrated in Fig.2, we can
distinguish four levels of reusability,
according to the range that one
knowledge component is limited to. A
knowledge component is either a
generic component, so that it can be
reused in different domains of

applications, and different task types,
without any restrictions, or it is
restricted to a specific range, and it

One knowledge component, is either
restricted to a specific domain, a
specific task, or both domain and task.
If it is domain restricted, then it can be
reused over all applications in that
domain. If it is task restricted, then it
can be reused across all domains of
applications, but in the same task. If it
is both, domain and task restricted,
then it can only be reused in a specific
domain, and a specific task, and this is
the least level of reusability.

 III-2 Reusability Competence
Of KBS Component Types

As illustrated in Fig.1, we can construct
reusable libraries of the following
knowledge component types:
 • Tasks.
 • Inferences.
 • Inference mechanisms.
 • Domain knowledge (Ontology and

Domain models)

Task library: Is a collection of abstract
skeletal plans that exhibit the overall
behavior of a task type. A task model
constitutes the procedural knowledge
of a task, that is how the expert system

Task

Domain Domain/Task

Generic

Fig.2 Levels of reusability

Generic

Task
Domain

4

would behave to fulfill the required
function.

Task models like diagnosis, and
scheduling are not domain restricted
knowledge components, since they can
be reused over different domains, but
they are task restricted because they
can only be used to fullfill a specific
task type.

Inference library: The main function
of an inference is to expand the set of
known values of concepts properties,
going from known facts or hypothesis
to conclusions using the appropriate
knowledge supplied by domain
models. Inferences maintain its
reusability from its ability to use
different domain models as its static
roles. The same inference can be used
in different tasks by altering the domain
model to suit the application on hand.
They are neither task-specific, nor
domain-specific, because one inference,

tasks, and different domains.

Inference mechanisms: Which have a
very flexible range of application, since
each inference mechanism has its own
knowledge representation that it works
on, and it has nothing to do with the
content of knowledge, neither the role
that it plays in the task structrue. It is
only restricted to knowledge
representation, so, we can conclude
that inference mechanisms are fully
generic components.

Knowledge base: Which is the
fundamental constituent of a
knowledge based system. As mentioned
before, we can organize the knowledge
base into two layers, domain ontology,
and domain models. Domain ontology
represent the communication language
of all components that constitute the

expert system, accordingly, the
reusability range of ontology is over all
tasks within the same domain.

Domain models represent clusters of
domain relations used for the
achievement of a specific function.
Their use is limited to their domain of
application.

IV Suggested Approach
The library driven approach is one of
the promising approaches to knowledge
reuse. Unfortunately, there are two
inherent problems that elevate the cost
of building a KBS from reusable library
components, namely: indexing problem,
and configuration problem. Knowledge
engineers are used to spend a
considerable effort to locate the
appropriate knowledge components
that suit the requirements of the
intended application. This problem
arises because generic library
components are usually designed at a
high level of abstraction, that makes it
after some customization processes,
suitable for applications instances. This
customization process (or configuration
process) varies from one domain of
application to another, and usually
requires a great effort from the
knowledge engineer. By all means, the
effort spent in locating the right
component, and configuring the
selected component should not exceed
the required effort for building the
application from scratch.

Our approach to this problem is
twofold. We build a customized (pre-
configured) library of knowledge
components for a specific domain, this
is the first half of our solution. This
helps in two ways: First, we reduce the
number of library components to those
only applicable for the domain of
interest. Second, as we already know in
advance the requirements of

5

applications in the selected domain, we
can customize library components for
the desired applications instances
automatically, and this is the second
half of the solution.

According to this solution, we are
expecting the following advantages:

 1. The cost of selecting and
configuring reusable components
can be minimized by utilizing
reusable domain-specific knowledge
components libraries, and automatic
configuration tools.

 2. From the knowledge engineering
perspective, building a KBS from
reusable domain-specific task
models guides both knowledge
acquisition and KBS development
processes in a structured manner.

 3. A knowledge based system, as a
software, has many routine, and
mundane software engineering tasks
that can be reliefed by utilizing
automatic code generation facilities.

V Expert System Development
Environment
The proposed development
environment consists of a set of editors,
that facilitate building and maintaining
knowledge components libraries, and
constructing knowledge based systems
out of these libraries.

As illustrated in Fig.3, the proposed
development environment consists of a
set of tools that enable knowledge
engineers to build libraries of different
types of reusable knowledge
components, and to build application
instances from these components.
To build the infrastructure for a large
scale knowledge based system, we start
with acquiring ontology, that is the
most fundamental constituent of a
knowledge base. By ontology, we

mean a full declaration of concepts,
relations between concepts, and
relations between properties.

This part of ontology represents the
lower layer of a domain knowledge.
Domain models embodies the upper
layer, and represent knowledge of what
are the domain relations required to
fulfill a specific function within the
domain of application.

To acquire ontology, we prepared two
editors: Concepts editor, and Relations
editor. The concepts editor is used to
declare domain concepts, along with
their properties, and properties facets.
The relations editor, uses the concepts
declarations as input, and facilitates
defining relations between concepts,
and relations between properties that

Currently we have five distinct
representations of relations: Rules,
Tables, Mathematical functions,
Constraints, and Object hierarchies.
Each of these representations has its
own internal structure that suits
different kinds of domain relations.
The selection of the appropriate
representation of a specific domain
relation is up to knowledge engineer,
according to some criteria that
characterizes each representation. It is
noteworthy that the proposed

 T ask
 instance

 T ask
 library

 T ask
 builder

 T ransfer
 tasks

 Inference
 library

 D om ain
 m odels

 O nto logy

 R elations
 editor

 C oncepts
 editor

 T ask
 editor

 Inference
 editor

 T ransfer task
 editor

 D omain
 m odels editor

Fig . 3 Integrated expert system developm ent environm ent

6

archetecture is not closed to the
aforementioned knowledge
representations, the knowledge
engineer is free to add new knowledge
representations, and inference
mechanisms that work on them.

After constructing concepts and
relations, we define domain models
using domain models editor. Domain
models editor creates clusters of
relations drawn from the knowledge
base, these relations are used together
to fulfill a specific function at the
knowledge level.

Task editor is used to create skeletal
task structures that embody the
procedural knowledge of a task,
possible entries of a task model are:

 • Initialization entries.
 • Transfer tasks calls.
 • Domain inferences calls.
 • Control entries, like loops and

conditional statements.

Transfer tasks editor creates input
transfer tasks, and output transfer
tasks, and user interface modules. User
interface modules are responsible for
accessing and displaying data in the
appropriate form to enhance the
usability and acceptability of the KBS,
while transfer tasks collect, validate
and communicate data to, and from
user interface modules.

Inference editor creates prototypical
domain-specific inferences, they are
represented as frames of code in which
the variable parts can be filled with
domain models instances.

The task builder comes at the task
instance generation stage, where the
knowledge engineer selects the
appropriate task model from the task

models library, and the task builder
takes the selected model as input, and
interactively creates task instance by
asking the knowledge engineer for
transfer tasks and inferences to be used
in the generated task instance.

Each transfer task is hooked to a user
interface module, and the knowledge
engineer only selects the transfer task
to be used in the current task, from the
transfer tasks that have been developed
using the transfer tasks editor.
 When the task builder encounters an
inference call in the task model, it
retrieves the inference prototype from
inferences library, then, it starts asking
the user for actual domain models to be
inserted into the inference frame. By
the end of this process, the inference
prototype becomes completely
instanciated. After the task builder
instanciates all task model entries, the
task model becomes complete.

VI Building Knowledge Based
Systems
After we have introduced the proposed
KBS development environment, in this
section we describe how we build
applications instances using this
environment.

The Central Lab for Agricultural
Expert Systems has succeeded in
building a library of knowledge
components in the domain of
agriculture, as we have a considerable
experience with applications in this
domain, gained through building a
number of expert systems, we
constructed the following libraries:[8]

 1. Task models library:
This library contains an abstract model
for different applications in the domain
of agriculture, actually we have five

7

task types: irrigation, fertilization,
diagnosis, treatment, and plant care.

 2. Inference library:
This library contains a collection of
domain inferences, from which an
application instance is constructed.

 3. Domain models library:
This library contains a definition of
different domain models used by
inferences as static roles. These domain
models point to different sets of domain
relations defined by the domain
ontology.

 4. Domain ontology:
A repository of domain-specific
concept declarations, and domain
relations, which represent the core of
knowledge acquired through different
implemented applications.
The following is an example of how we
build an irrigation application instance
using the task builder.

First we select the task model from the
task models library. Note that model
selection is very simple, since we
already know the application model
that we need. Fig. 4 illustrates the task
structure of the selected model.

The inference structure of the irrigation
model is illustrated in Fig.5, and
displays the different domain inferences
and domain models used by the model.

As shown in Fig.5, the inference
structure of the irrigation model uses
four domain models, namely: derivation
model, irrigation model, constraint
model, and fix model.

Derivation model uses knowledge
required to derive irrigation parameters
needed by the system, like plant growth
stage.

Irrigation model constitutes knowledge
required to calculate the irrigation
interval and water quantity for the
current case.

Constraints are conditions that must be
satisfied to accept the generated
irrigation schedule.

Fix model represents knowledge
required to modify the generated
irrigation schedule to satisfy the
conditions specified in the constraints
model.

The task builder is an interactive tool
that allows the knowledge engineer to
select the task model from which an
instance is created for the current
application. The knowledge engineer
can alter the inferences of the selected
task model if needed. The task builder
takes the selected model as a plan, and
starts to ask the knowledge engineer
for the actual domain models to be
used by the task. These domain models
are drawn from the pre-constructed
domain models library, also the
knowledge engineer can modify the
relations set that constitute a selected
domain model, either by selecting other
relations from the domain ontology
library, or by acquiring new specific
knowledge for the current application.

Eventually, the task builder generates
the task instance code, taking in

Begin
 Initialize the system.
 Get case data (a transfer task).
 Abstract for irrigation (inference).
 Compute irrigation interval (inference).
 Generate initial irrigation schedule (inference).
 WHILE TRUE
 Check violations (inference).
 IF ACCEPTED
 Exit
 ELSE
 Revise irrigation schedule (inference).
 ENDIF
 ENDDO
 Display irrigation schedule (a transfer task).
End

Fig.(4) Irrigation Task Model

8

consideration all the integrity of all
inferences that constitute the task.

VII Conclusion
In this paper we were focusing on the
problems of building large scale KBSs
from reusable components. We
introduced the reusable libraries
technique as an accepted, and
promising solution, and we described
the indexing problem, and the
configuration problem as the main cost
items that guide the decision whether
building a KBS from reusable
knowledge components libraries is
feasible or not.

We investigated the reusability
opportunities of KBSs components,
and we studied the behavior of each
type when prepared for reuse, and
suggested the proper way of utilizing
these opportunities.
We presented domain-specific libraries
and automatic configuration as a
solution for the forementioned
problems. Domain-specific libraries
narrows the selection range to the

scope of interest, therefore it relieves
the effect of indexing problem, on the
other hand, automatic configuration
guides the process of building
customized applications from
predefined skeletal or abstract
structures, taking care of system
integrity and robustness.

We introduced a suite of editors and
modules that build up an integrated
KBS development environment, based
on the utilization of domain-specific
libraries of reusable knowledge
components, and automatic
configuration of custom KBSs.

The paper also included an illustrative
example that shows how a task instance
can be constructed from reusable
knowledge components, using the task
builder tool.

VIII References:
[1] B. J. Wielinga and A. Th. Schreiber.
Conceptual modelling of large reusable
knowledge bases. In K. von Luck and
H. Marburger, editors, Management

E x p a n d

E x p a n d e d c a s e
d e s c r i p t i o n

I r r i g a t i o n m o d e l

I r r i g a t i o n i n t e r v a l

C o n s t r a i n t s

C a s e
d e s c r i p t i o n

P r o p o s e d I r r i g a t i o n
S c h e d u l e

V i o l a t e d c o n s t r a i n t s

D e r i v a t i o n m o d e l

C o m p u t e

P r o p o s e

C h e c k
V i o l a t i o n s

I r r i g a t i o n S c h e d u l e

F i x F i x m o d e l

F i g . (5) I r r i g a t i o n I n f e r e n c e S t r u c t u r e

9

and Processing of Complex Data
Structures, volume 777 of Lecture
Notes in Computer Science, pages 181-
200, Berlin, Germany,. Springer
Verlag, 1994.

[2] B. Chandrasekaran, Generic
Tasks as building blocks for
knowledge based systems: The
diagnosis and Design examples.
Knowledge engineering review,4,183-
219,1987.

[3] B. Chandrasekaran, Towards a
taxonomy of problem solving types.
AI Magazine, 4(1),9-17,1983.

[4] L. Steels Components of expertise.
AI Magazine, 11(2):29-49, 1990.

[5] B.J. Wielinga, W. Van de Velde,
A. Th. Schreiber, and J.M.Akkermans.

modeling approaches
David, Jean-Paul Krivine, and Reid
Simmons, editors, Second Generation
Expert Systems, Pages 299-335,
Springer-Verlag, Berlin - Heidelberg,
Germany, 1993.

[6] Puerta, A.R., Edgar, J.W., Tu,
S.W., and Musen, M.A.: A multiple
method knowledge-acquisition shell
for the automatic generation of
knowledge-acquisition tools.
Knowledge Acquisition, 4, 171-196,
1992.

[7] Puerta, A.R., Tu, S.W., and
Musen, M.A.: Modeling tasks with
mechanisms. International journal of
intelligent systems,8,129-152,1993.

[8] Technical Report No. TR-88-024-
41, Methodology for the Engineering
of Expert Systems - Version 6.0,
December, 1995.

