
TR/CLAES/261-2003.3 �

A Methodology for Building a
Generic Plant Care Model

1 Introduction

The aim of this document is to present a methodology for building a generic plant care model hence the
development of the appropriate tool that support a rapid plant care expert system. The generic model
would serve both the developers/designers of an plant care expert system and the implementers of an
expert system tool.

To do so, we have aimed to identify and capture all knowledge that is related to the plant care task,
regardless of the crop variety/type, and identify concepts that vary from one crop to another. A typical
plant care expert system is made out of concepts and relations, on top of which a task layer is built. By
identifying concepts that are common across any plant care system, we can enhance the re-use of these
concepts. We define those as static concepts. Dynamic concepts are those, which may vary from one
crop to another. Though we can not accurately predict all of those, we can predict concepts to which
they are related (plant, plantation type, etc) . We can consequently identify the relations that these
concepts will affect and enable those to be edited to modify an irrigation model.

2 Built in/Required Concepts

2.1 concept user request
 properties:

 * value

Name Value
Description This concept is used by the system to give the user

the chance to select the recommendation type
whether based on event driven or a complete
schedule.

Source of
Value

User

Type Nominal
Cardinality Single
Legal values ����������	�
������������������������������

TR/CLAES/261-2003.3 �

2.2 concept plant;

 properties:
 * Status

 * possible status:

 * Age

:

Name value
Description An attribute which is used to store the current plant

status..
Source of
Value

user

Type nominal
cardinality single
Legal values Legal values should be acquired from experts�

Name value
Description An attribute which is used to possible plant status at

a specific time.
Source of
Value

Derived from a relation called “PREDICT”

Type nominal
cardinality single
Legal values Legal values should be acquired from experts�

Name value
Description Plant age (will be computer from the planting date

and the current date
Source of
Value

derived

cardinality single
Type number
Legal values 0 - Max plant age

TR/CLAES/261-2003.3 �

2.3 concept plantation;
 properties:

•••• area:

• date:

•••• Farm status

Name value
Description Farm area in feddan
Source of
Value

User

Cardinality Single
Type Number (real)
Legal values + value

Name value
Description Plantation date
Source of
Value

Derived/User

Cardinality Single
Type Date
Legal values

Name value
Description A property that describes some aspect of the current

farm
Source of
Value

User

Cardinality Multiple
Type Nominal
Legal values Crop dependent values�

TR/CLAES/261-2003.3 �

2.4 concept operation;
 properties:

method type

tool name:

Tool hiring rate:

Name value
Description A property that describes the plant method

plantation.
Source of
Value

KE during the knowledge acquisition

Cardinality Single
Type Nominal
Legal values Mechanical, chemical, manual

Name Value
Description Tools that might be used in performing a plant care

operation. The system should contain the required
knowledge to determine the tool.

Source of
Value

1. KE during the knowledge acquisition
2. derived if there are alternative

Cardinality Single
Type Nominal
Legal values Crop specific values

Name Value
Description Tool hiring rate is required to compute the operation

cost if it is required by the system.
Source of
Value

Hiring rates might be stored in database for
simplicity.

Cardinality Single
Type numeric
Legal values

TR/CLAES/261-2003.3 �

 total time:

 labor type:

number of boys per feddan:

Name Value
Description Operation performing time. This property might

affect either the calculation of its cost or the time of
performing the next operation.

Source of
Value

1. KE during the knowledge acquisition
2. Derived if it depends on the operation type

Cardinality Single
Type Nominal
Legal values

Name Value
Description Labor type is used to determine the number of

labors per feddan to perform an operation
Source of
Value

1. KE during the knowledge acquisition
2. Derived if it depends on operation type

Cardinality Single
Type Nominal
Legal values Men , boys

Name Value
Description Number of required labor in term of working boys
Source of
Value

1. KE during the knowledge acquisition
2. Derived if it depends on operation type

Cardinality Single
Type numeric
Legal values More than one

TR/CLAES/261-2003.3 �

number of men per feddan:

status

Occurrence:

Name Value
Description Number of required labor in term of working men
Source of
Value

1. KE during the knowledge acquisition
2. derived if there are alternative

Cardinality Single
Type numeric
Legal values More than one

Name Value
Description Operation status.
Source of
Value

Derived (SUGGEST relation)

Cardinality single
Type nominal
Legal values not defined, suggested, not suggested
default value Not defined

Name Value
Description An input attribute to get information whether this

operation has been done.
Source of
Value

User

Cardinality Single
Type Nominal
Legal values ���	������	��������� ����	���!����� ����	���!���������"�#�$�����"�#�$���

default value:

�� ����	���!����� ����	���!���

TR/CLAES/261-2003.3 %

 Importance

method

operation number

:

cost

Name Value
Description Operation optional status
Source of
Value

1. KE during the knowledge acquisition
2. Derived if there are alternative

Cardinality Single
Type Nominal
Legal values �!
�&�$���!
���'�

Name value
Description Text that describe the operation method
Source of
Value

Derived from a relation called “Assign”

Type nominal
cardinality single

Name value
Description This property is used to identify the operation

number. And is used to sort the operations.
Source of
Value

Static – to be assigned by the KE

cardinality single
Type number

Name value
Description Operation cost.
Source of
Value

KE during the knowledge acquisition
derived if it depended on other factors

Cardinality Single
Type Number (real)
Legal values + value

TR/CLAES/261-2003.3 (

actual cost

name

Time difference

Application date

Name value
Description Operation cost.
Source of
Value

User

Cardinality Single
Type Number (real)
Legal values + value

Name value
Description Operation name
Source of
Value

Derived (Apply)

Cardinality multiple
Type nominal
Legal values (Listing of possible crop operations)

Name value
Description The number of days that should separate two

successive operations
Source of
Value

KE

Cardinality Single
Type number
Legal values

Name value
Description The operation application date
Source of
Value

User at run time/control

Cardinality Single
Type date

TR/CLAES/261-2003.3)

2.5 concept operation cost;
 properties:

 value

2.6 concept seedling;
 properties:

sub-type-of: plant;

type

2.7 concept session date;
 properties:
 current month

Name value
Description Property to get from the user whether he/she need to

compute the total operations costs
Source of
Value

User

Cardinality single
Type Nominal
Legal values � *�+�, � *�+��,�-�

Name value
Description
Source of
Value

User or database

Cardinality Single
Type Nominal
Legal values Crop dependent

Name Value
Description
Source of
Value

System

Cardinality Single
Type Nominal

TR/CLAES/261-2003.3 �.

value

2.8 concept Irrigation;
 properties:

type

2.9 concept Planting;
 properties:
 type

Name Value
Description
Source of
Value

System

Cardinality Single
Type date

Name Value
Description Irrigation type used in the farm
Source of
Value

database

Cardinality Single
Type numeric
Legal values /�01��� �2,��/�01��� �2,�� ,#�� �2,��,#�� �2,����

Name Value
Description Planting type
Source of
Value

database

Cardinality Single
Type Nominal
Legal values 3*+'�4�	��	�
5 �67�8��4�	��	�
5

TR/CLAES/261-2003.3 ��

2.10 concept event;
 properties:

occurrence

value

2.11 concept soil;
 properties:
 type

Name Value
Description
Source of
Value

User

Cardinality Single
Type Nominal
Legal values 9�: �����!�9�; �
default value ���!�9�; �

Name Value
Description The current event
Source of
Value

user

Cardinality multiple
Type nominal�
Legal values Crop dependent

Name Value
Description
Source of
Value

database

Cardinality Single
Type nominal
Legal values �<�<'�����0=����+>*��

TR/CLAES/261-2003.3 ��

2.12 concept previous crop;
 properties:

fertilizer

2.13 Operations concept instances

In this section the knowledge engineer should specify all instances of the plant care
operations that should be done during the crop lifetime. The following template might
be used to fill these information:-

Instance name

sub-type-of: operation;
 [list of all properties and their corresponding associated values that are
 acquired from the expert about the operation]

2.14 Event instances
In this section the KE state the events that have an effects on the occurrence of the
operations. The following form will be used:

Instance name

sub-type-of: event;

3. Domain Models

The plant care system include 4 domain models:-

1. Predict: This model is used to derive the plant possible current stages (by

generate plant status inference step- see figure 2)
2. Suggest: this model is used to infer the suggested operation. It contain the two

types of conditions:
a. Sequence condition, which enforce the sequence on the operations

such that keep the operation done in the proper way. Example of the
sequence conditions is

Name Value
Description Information regarding the previous crop fertilization
Source of
Value

database

Cardinality Single
Type nominal
Legal values �?�>���@ ��A!���2*B	C�������?�>���@ �D��A����

2*B	C����

TR/CLAES/261-2003.3 ��

 <previous op name. Occurrence> = done &
<current op name. Occurrence> = not done yet

another example for the sequence condition and is used to permits a
time difference between two successive operation is as followed

<session date. Value> >= <previous operation-name> . application date +
 < previous operation-name>. time difference>

b. Environment conditions: any environment condition such that: -
1. Time or plant age
2. Plantation or farm condition
3. Current crop state
4. Event occurrence

3. Assign : This model is used to fill the operation properties that should be

displayed to the user of the system such that:
• Operation method
• Operation tool
• Operation material
• Material quantities
• Number of labor per feddan
• Operation cost

4. Recommend: this domain model will be used by the determine inference
step (see figure 2) to generate all possible operations that are applicable to a
specific farm conditions. Note that this inference is only used in case a
complete operation schedule is required by the system user.

 The model schema is as follows
 < environment conditions> -- > operation . name. = <op-instance>

3.1 Operation state diagram

We can distinguish 2 types of operations :
a. Obligatory operation its definition is “ an operation if its condition (either

environment condition or sequence condition) is met, it should be done, i.e.,
No way for canceling.

b. Optional operation: its definition is “an operation if its condition (either
environment condition or sequence condition) is met, it may be done
canceled by user.

TR/CLAES/261-2003.3 ��

3.2 Operation states

We have the following operation states diagram

Suggested

Not
suggested

Done

Cancelled

Environment condition

������������	
�
��

Not defined Optional op

TR/CLAES/261-2003.3 ��

4. Inference Knowledge

4.1 Inference Structure

Inference structure is shown in figure 2

Figure 2: inference structure

 Event Environment

Generate plant
 status

Possible plant
status

Obtain plant status

Plant status

Suggest

Next
operation

Assign

Solution

Plantation
 date

Calculat
e

Plant age

Current
 situation

Calculate
cost

Operation
cost

Costs

determine

operations

Assigned operations

Order schedule

TR/CLAES/261-2003.3 ��

4.2 Inference specification

inference: calculate
 operation-type: calculate the plant age.
 input-roles: plantation date.
 output-roles: plant age.
 static-roles: there is no static roles
 spec: plant age is calculated in days by subtracting the plantation date from the

session date.

 inference: generate plant status
 operation-type: generates the possible plant status.
 input-roles: environment, plant age.
 output-roles: possible plant status.
 static-roles: PREDICT ∈ prediction–model.
 spec: the possible plant status are generated by applying

"PREDICT " relation.

inference: obtain plant status
 operation-type: transfer task.
 input-roles: possible plant status.
 output-roles: plant status.
 static-roles: there is no static roles.
 spec: obtain the current plant status from the user.

inference: suggest
 operation-type: suggest the next agricultural operation.
 input-roles: environment, plant age, event, plant status, current situation.
 output-roles: next operation.
 static-roles: SUGGEST ∈ suggestion–model.
 spec: the next agricultural operation are to be suggested by applying

" SUGGEST " relation.

inference: determine
 operation-type: determine the agricultural operations schedule.
 input-roles: environment.
 output-roles: operations.
 static-roles: APPLY ∈ application model.
 spec: the agricultural operations schedule is determined by applying

" APPLY" relation.

inference: assign
 operation-type: assign parameters to the suggested operation.
 input-roles: next operation, environment, operations.
 output-roles: solution, assigned operations.
 static-roles: ASSIGN ∈ assignment–model.
 spec: assign the method to the suggested operation or to the scheduled operations

TR/CLAES/261-2003.3 �%

 by applying " ASSIGN " relation.

inference: order
 operation-type: order the operations ascending according to
 operation: operation number .
 input-roles: assigned operations
 output-roles:. schedule
 static-roles: there is no static role
 spec: get operation: name(L), /* L is a list */
 for each element(E) in L get E: operation number,
 sort ascending L according to operation number of each element,
 the sorted list is L’,
 DISPLAY(L’)

 inference: calculate cost
 operation-type: calculate cost of the suggested operation.
 input-roles: next operation, costs.
 output-roles: operation cost.
 static-roles: there is no static role
 spec:

IF the user request is (next operation)
 THEN
 Begin

 IF the method of the next operation is mechanical
 THEN get the tool name (T) of the next operation
 get the tool hiring rate (THR) of (T)
 get the total time/Feddan (TT) of applying the
next operation

 get the area (A) of the plantation
 cost = THR*TT*A
IF the method of the next operation is manual
THEN get the number of men/Feddan (M) of applying the next

operation
 get the labor wage (W)
 get the area (A) of the plantation

 cost = M*W*A
 End
ELSE
Begin
 get operation: name (N) % N is a list
 While N <> {}
 Begin
 N = [E | Tail]

 IF the method of ‘E’ is mechanical
 THEN get the tool name (T) of ‘E’
 get the hiring rate (HR) of (T)
 get the total time/Feddan (TT) of applying ‘E’

 get the area (A) of the plantation
 Cost = HR*TT*A
 Insert Cost in E: cost

TR/CLAES/261-2003.3 �(

 TotalCost = TotalCost + Cost
 N = Tail
IF the method of ‘E’ is manual
THEN

IF E: labor age = men
THEN

get number of men per feddan((No) of ‘E’
get man wage (�������C,�E�������C,�E) (W)

IF E: labor age = boys
THEN

get number of boys per feddan((No) of ‘E’
get boy wage (4&8���C,�E4&8���C,�E) (W)

 get the area (A) of the plantation
 Cost = No*W*A
 Insert Cost in E: cost
 TotalCost = TotalCost + Cost
 N = Tail
End

5. Task Knowledge

task plant care;
 task-definition:
 goal: suggest the next agricultural operation,
 presents a schedule of the agricultural operations;
 input: Environment: {soil: type, seedling : type, previous crop : fertilizer,
 Irrigation: type, Planting: type };
 Environment: { plant: status};
 plantation date: {plantation: date};
 current situation: {operation: occurrence};
 event: {event: value};
 cost: {the cost of equipments, labor , … etc from database}
 output: solution: { suggested operation, importance, method},
 operation cost: {cost of the suggested operation},
 schedule: {the schedule of the agricultural operation during the season},
 task-body:
 type: composite
 subtasks: calculate, generate plant status, obtain plant status, suggest, assign,
 determine, order,

 additional-roles:

Possible plant status: {plant: possible status }
 Plant status {plant: status}
 plant age: {plant: age}

Next operation {operation: status = suggested}
Operations {operation: name}
Assigned operations

 control-structure:

 {
Case user request: value

= ��

TR/CLAES/261-2003.3 �)

{
Calculate plant age (plantation date� plant age)
Generate plant status (environment � Possible plant status)
Obtain plant status (plant status)
Recommend (environment � recommended operations)
Suggest (recommended operation,

 environment, plant age,
 current situation,
 plant status,
 event � next operation)

IF operation cost: value = � *�+�� *�+�

 THEN ������calculate cost(O, C: costs OC: operation cost)
 calculate cost (next operation, costs /* from user *./ � operation cost)

Assign (next operation � solution)
F�

��������������������������������������
determine(E: environment � O: operations),

 Assign(E, O � AP: assigned operations),
 order(AP � S: schedule),

IF operation cost: value = � *�+�� *�+�
 THEN ������calculate cost(O, C: costs OC: operation cost)
 PRESENT(S, OC)
 ELSE PRESENT(S)

�F

}

