

Using Dynamically Acquired Background Knowledge For Information

Extraction And Intelligent Search

Samhaa R. El-Beltagy, Ahmed Rafea, and Yasser Abdelhamid
Central Lab for Agricultural Expert Systems

Agricultural Research Center
Ministry of Agriculture and Land Reclamation.

Cairo, Egypt
E-mail: {samhaa, rafea, yasser}@mail.claes.sci.

Abstract

This paper presents a simple framework for extracting information found in publications or
documents that are issued in large volumes and which cover similar concepts or issues within a given
domain. The general aim of the work described, is to present a model for automatically augmenting
segments of these documents with metadata using dynamically acquired background domain
knowledge in order to assist users in easily locating information within these documents through a
structured front end. To realize this goal, both document structure as well as dynamically acquired
background knowledge, are utilized. A real life example where these ideas have been applied is also
presented.

INTRODUCTION

Enterprises and organizations often contain information rich texts, but rarely have the means
by which these resources can be intelligently searched. In many cases, the search interface
that is adopted is one based on keywords and though the indexing/matching techniques
employed may be very sophisticated, this approach suffers from the same limitations
associated with the existing Web search model (El-Beltagy, 2000; Han & Chang, 2002). This
chapter addresses the particular problem of trying to extract information from organizational
publications that are issued in large volumes and which cover similar concepts or issues and
from which information cannot be extracted through the use of the structure of a document
alone. The end goal, is to enable individual sections of those documents to be automatically
augmented with metadata, so that users can perform structured search using a predefined set
of categories or classifications and obtain as a result, only segments or sections of documents
that fit their search criteria. The class of documents targeted by this work is thus that of
resources that contain a set of information entities most of which fall under known categories,
but which contain no special markup to differentiate them from other information entities.
The approach adopted towards this problem is to attempt to make use of background
knowledge about those categories and to employ that for intelligent search. Rather than
forcing predefined static background knowledge, the work presented allows for the dynamic
acquisition of this knowledge as the system evolves. Our goal is thus two fold; the first is to
provide the tools that can assist in ontology building and to utilize the background ontology
for document indexing, and the second is to provide an intelligent interface to allow for the
retrieval of the stored information.

BACKGROUND

Information is vital resource to individuals and organizations as its timely location can
influence key decisions that affect both. It is thus no wonder that massive research efforts

have been undertaken in recent years with the aim of improving upon existing search
facilitates specially among unstructured and semi-structured resources where the problem of
information finding is most pronounced (Han & Chang, 2002). Looking into ways for
extracting information from semi-structured texts has been investigated in many system
integration projects (El-Beltagy, 1998) such as TSIMMIS (Garcia-Molina et al., 1995) and
Lore (McHugh, Abiteboul, Goldman, Quass, & Widom, 1997). These systems have aimed to
provide an integrated view to related data scattered across various structured and semi-
structured resources and have thus developed templates and wrappers to extract structured
information from semi-structured texts. The primary goal of such systems was to unlock the
wealth of information stored within legacy applications and to integrate those with other
related/similar data available in other resources. Towards this end, specific languages,
representation models, and ontologies were designed and adopted.

Also, much work has been carried out within the knowledge acquisition community with the
aim of providing automatic support for the extraction of information from un-structured texts.
This task is still proving to be a rather challenging one. Information Extraction (IE) systems
have thus appeared with a more focused goal of supporting the task of extracting information
from specific domains or for particular tasks (Vargas-vera, Domingue, Kalfoglou, Motta, &
Buckingham Shum, 2001). IE systems often rely on templates, hand generated annotations,
or domain dependant NLP knowledge. For example, the SoftMealy system (Hsu, 1998) and
the system presented in (Kushmerick, Weld, & Doorenbos, 1997), are both IE systems that
attempt to extract information from Web pages through examples of such pages all of which
exhibit similar structure. These systems work when structure templates of well defined fields
of content exist. For example, a page containing some country codes, may have the name of a
country formatted in bold and the code for that country formatted in italics (Kushmerick et
al., 1997). It is possible then, to use this formatting information to extract country-code pairs.
However, it is often the case that structure or formatting on its own can not be used to extract
information. One of the solutions purposed to over come this obstacle, is to tag the
information in a way that would enable its extraction. Indeed, XML (Bray, Paoli, &
Sperberg-McQueen, 1998) emerged to achieve precisely that. Taking this idea a step further
is the approach that has been adopted by SHOE (Heflin & Hendler, 2000a; Heflin &
Hendler, 2000b). SHOE is a web based knowledge representation language that can be
embedded in web pages. By explicitly specifying the ontology being used within a web page
and tagging information within that page using that ontology, it is possible to appropriately
extract information from that page as well as infer relations and information not explicitly
represented. This idea was the basis for the DARPA agent markup language (DAML)
(DARPA, 2000). DAML, RDF (Lessila & Swick, 1999) and a number of other languages,
are all part of the Semantic Web the goal of which is to enrich information resources with
semantics that can be processed by computers (Fensel, 2000). What can be said regarding this
approach in general, is that for its successful application to existing documents, automatic
tagging/meta data augmentation mechanisms have to be devised; trying to manually re-author
existing documents in order to comply with these emerging standards is simply not possible
because of their sheer volume. The work presented herein, attempts to do just that, but only
for documents that exhibit the characteristics outlined in the previous section and in the next.

PROBLEM SCOPE AND DEFINITION

It is often the case that a broad range of documents containing useful information exists, but
with no way to access individual segments of these documents directly using targeted or
structured search. Any document is typically divided into a number of sections and sub-

sections. For example, documents that cover common problems related to various electrical
appliances and their solutions will usually have sections for each class of problems, each of
which will have subsections that cover a specific problem belonging to that class. Without
targeted search, a user interested in finding a solution to a particular problem related to a
specific electrical appliance, must first try to locate the specific document that covers
common problems and their solutions for that appliance, and then begin the tedious task of
browsing that document in order to locate the problem he/she is interested in. A search engine
that would allow the user to select the appliance for which he/she is attempting to find a
solution, then allow the user to select the specific problem he/she is interested in, and finally
return the exact section that covers that problem, would certainly save the user valuable time
and effort. The same interface, may also allow a user to compare how a given problem is
solved across a range of appliances.

Moving beyond this simple and hypothetical example, in this work, we’ve had to address a
real problem related to agricultural extension documents issued primarily to assist farmers in
cultivating and caring for certain crops. Each document is information rich with respect to the
crop which it covers. Depending on the importance of a given crop and how involved the
issues related to it are, a crop may have more than one document to address it. Because of the
wealth of information contained within these documents, they’re often used by researchers as
well as by farmers and extension workers. A typical document will cover most aspects related
to cultivating a crop, starting from land preparation to harvest. Each section within a
document targets a given problem or issue, and each sub-section embodies a specialization
of that issue. For example, a section called ‘Diseases’, will have as its subsections most
diseases that are likely to affect a given crop. Similarly, a section covering operations, will
cover all agricultural operations that apply to that crop (irrigation, fertilization, etc). In this
case and in similar cases, there are two elements that can work in the advantage of an
intelligent search. The first is that the main elements of search can be identified before hand
over a broad class of documents. ‘Diseases’ and ‘Operations’ are two examples of search
categories that can be readily identified. The second element is that individual mappings of
instances related to the categories, are more or less the same across all documents and are
featured in either section or subsection headings. For instance, ‘Fertilization’, ‘Irrigation’,
and ‘Land Preparation’, all belong to the class of agricultural operations, while ‘Powdery
Mildew’ belongs to the class of agricultural diseases. These classes and their instances will
usually generalize across all crops. So, the individual instances of these general categories
embody background knowledge that can be added to individual document segments as meta-
data. There are some cases however, when a general category can be identified, but the
instances of which will rarely recur in many documents. Crop ‘Varieties’ is an example. In
most extension documents, there is usually a section on varieties with various sub sections on
each variety and it’s different features. The name of a crop variety is specific to that crop and
as such cannot be used as a general search term. To enable the location of information on any
given variety for a given crop, the hierarchy of the document itself can be utilized to infer that
each subsection of any section covering ‘Varieties’ is an instance of the general category
‘variety’.

Generally speaking, augmenting various document sections with metadata involves a number
of steps which can be summarized as follows:
� Identifying the various categories onto which various document sections can be

mapped.
� Acquiring and representing background knowledge in a way that can facilitate the

mapping of various document sections into the identified categories.

� Segmenting various documents, and employing background knowledge to map each
document section to its corresponding category

� Storing structured index information in a persistent data store such as a database, or
converting the document into an alternate representation (ex. XML).

� Providing a user interface to enable search across indexed documents.

MODELING BLOCKS

In this work, it was important to adopt a flexible yet powerful way of representing both
background information as well as a document. XML (Bray et al., 1998) was thus adopted to
represent both. Background information is stored in an XML file which is used to represent
index terms. The file has the following structure:

<indexTerms>
 <general_category indexChildNodes= “true” >

<name> diseases </name>
<sameAs> disorders </sameAs>

 </general_category>

 <general_category indexChildNodes= “true” >

<name> Varieties </name>
 </general_category>

 <disease indexChildNodes= “false” >
 <name>Powdery Mildew</name>
 <sameAs> aSynonym </sameAs>
 <sameAs> ……….. </sameAs>
 </disease>
 …

…
 <operation indexChildNodes= “false” >
 <name> aNameOfanOperation </name>
 <sameAs> aSynonym </sameAs>
 </operation>

…
…
<pest indexChildNodes= “false” >
 <name> aNameOfaPest </name>
…
…
</pest>
…
…

</indexTerms>

Figure 1: The XML representation of background knowledge

This representation, despite its simplicity, allows for the mapping of various phrases to their
corresponding categories, as well as provides a simple thesaurus using the <sameAs> tag.
The indexChildNodes can be used to specify whether or not specializations of a given term
should be indexed as belonging to that term, i.e. whether or not a document’s hierarchy is to
be utilized.

A document will have the XML representation illustrated in Figure 2

<doc>
 <title> aTitle </title>
 <section>
 <id>102328933656>/id>
 <level>1</level> Åthe level of a section within a document hierarchy Æ
 <heading> the text heading of the section </heading>
 <text> a pure text representation of the contents of the section </text>
 <html> <![CDATA[the html text representation of this section]] < /html>
 </section>
 <section>

…..
 …..
 </section>
</doc>

Figure 2: The XML representation of an un-indexed document

SYSTEM OVERVIEW

The implemented system is a distributed one, in which a number of components
communicate together to achieve the required functionality. The main components of this
system are: an indexing user interface, an indexing backend linked to a DBMS, and a search
front end also linked to a DBMS. Figure 3 shows the various components each of which is
described in the following sub-sections, and their interactions.

Document
Publisher

Indexing
Backend

Input
document

Background
knowledge

Web based indexing
front end

Select/upload

contents

Update

DBMS

Web based structured
search interface

search
criteria

Query

Results

Formatted
results

store indexed
doc.

System user

Figure 3: System components and interactions

The Indexing Backend

The indexing backend is the component responsible for augmenting input documents with
meta-data using background knowledge. The indexing backend is implemented in Java as a
multithreaded HTTP server that is capable of receiving indexing requests embedded in HTTP
requests. On startup, the system loads the XML representation of background knowledge
into a set of dictionaries and data structures that can facilitate the indexing process. A request
to this component will contain the URL of the file that requires indexing as well as the name
of the crop for which this file belongs. Before carrying out any indexing, the component
starts reading the specified document and breaks it down to the structure specified in figure 2.
Following this segmentation phase, pattern matching techniques are applied to match section
heading titles with index terms. An index record for each section is created, with each record
containing fields for every pre-identified category (one for diseases, another for operations,

etc). Should a match be made between a heading and one of the input index terms, then the
category of the section will be deduced and the field designated for that category will be
filled with an ID pointing to the specific instance against which a match was made. A single
section may match with more than one category. After the analysis of a given section is
completed and a record is created accordingly, the record along with a pointer to the specific
section for which it was derived are sent to a remote storage component (a database) where
they are kept. After analysis of the whole document is completed, an HTML page is returned
to the user. Within that page, all section and subsection headings are displayed and besides
each, it is indicated whether that section has been indexed or not and if indexed, whether
indexing was performed directly or indirectly (through the use of hierarchical information).
Sections that have not been indexed are hyperlinked to an interface which allows the user to
edit their text so as to update the background knowledge and re-index the input document.
Updating background knowledge can involve the creation of a new category instance, or the
creation of synonyms to associate with existing ones. The update request is encoded in a URL
sent to indexing backend over HTTP. The indexing backend subsequently ‘learns’ this new
information and updates its background knowledge file. Initially, some background
knowledge could be acquired from a domain expert, or it could be completely learned
through the indexing process (which also requires usage by someone who is familiar with the
domain).

The Indexing User Interface

Since it is anticipated that those who will request document indexing will do so remotely, a
Web interface for facilitating the indexing and uploading of extension documents was
implemented. This interface simply allows a user to select an extension document from their
local machine, uploads it to a Web server, and then indexes this document through
communication with the indexing backend.

The Search Front End

A Web search front end is provided to allow users to rapidly fetch their required information
from the extension documents by selecting one or more values for index parameters, where
the index parameters are those of the crop name as well as pre-defined indexing categories.
The number of selected parameters defines whether the query will be a loose or a specific
one. The more specific the query, the less number of records are returned. After a query is
entered, it is converted to SQL and dispatched to the database in which indexing information
has been stored. The result is displayed in the form of an html page containing a list of index
records that match the entered query. The output includes the following: the heading title of
the matching section, a sample from the matching paragraph, a hyperlink to the source
section. On following the hyperlink, only the text of the selected section will be displayed.
However, depending of the level of a section, extra information that defines the context of the
section as part of the whole document, might be displayed. In addition, a hyperlink to the
source document will always be displayed.

RESULTS

In our real life example, thus far a total of 24 documents were indexed using the system
resulting in the augmentation of 648 sections with meta-data. Our testing of the system has
revealed that for any given query, none of the returned results were irrelevant. The search
front end for this system was made available as on of the sub-systems of a large information
system devised to aid farmers in their farming activities. The system as a whole has six more
subsystems including two expert systems, a forum, a problem reporting facility and a search

front end for economical data all of which are accessible from a web interface. Analyzing
web log data for 2003 has revealed that the page from which the search front end was made
available, was the second most visited page after the site’s main web page. We believe that
the reason for this page’s popularity is the ease by which it allows users to locate specific
items of interest, a task that would have other wise been tedious even if a keyword search
model was made available for these documents. This system can also be a powerful research
tool as researchers can for example, easily study the manifestations of a single disease on
different crops by specifying that disease and omitting any specific crop in the query, thus
loosening it.

FUTURE WORK

In building our prototype, the main categories under which extension document headings
could be classified, were hard wired into the code and for each of these categories, a table
was created in the database. To enable our technique to work with any kind of document, we
intend to remove any hardwired information and to allow for the definition of categories by
the indexing user, i.e by a user that knows enough about the domain and the documents. We
will also extend our tool in order to enable it to automatically create any required DB tables,
and to dynamically generate the search interface. This will make our tool more generic and
will enable its application in any domain.

Another area of future work that we intend to pursue, is that of the agentification of the
search component. By doing so, we will allow other agents within an agent based framework
to make use of it. For example, an expert system agent may use this service to link its
conclusions with information available about these conclusions within the brochures

CONCLUSION

This paper addresses the particular problem of attempting to locate, using a user friendly
structured interface, information in organizational publications that are issued in large
volumes and which cover similar concepts or issues. The general aim of the work described,
is to present a model for automatically augmenting segments of these documents with
metadata using dynamically acquired background domain knowledge in order to assist users
in easily locating information within these documents through a structured front end. We
have successfully applied the presented model for extension documents within the
agricultural domain. The technique used to achieve this goal, is a simple but powerful one,
which could be generalized to apply to any collection of documents that cover similar
concepts within a known domain.

Acknowledgments
This work has been supported by FAO grant TCP/EGY/065

References

Bray, T., Paoli, J., & Sperberg-McQueen, C. M. (1998). Extensible Markup Language (XML)
1.0 : World Wide Web Consortium.

DARPA. (2000). The DARPA Agent Markup Language(DAML). Available:
http://www.daml.org/.

El-Beltagy, S. (1998). Approaches to System Integration For Distributed Information
Management . Southampton, UK: University of Southampton.

El-Beltagy, S. (2000). Context, Queries, and the Web . Southampton, UK: University of
Southampton.

Fensel, D. e. (2000). The Semantic Web and Its Languages. IEEE Intelligent Systems, 15(6),
67-73.

Garcia-Molina, H., Hammer, J., Ireland, K., Papakonstantinou, Y., Ullman, J., & Widom, J.
(1995). Integrating and Accessing Heterogeneous Information Sources in TSIMMIS. Paper
presented at the AAAI Symposium on Information Gathering, Stanford, California, USA.

Han, J., & Chang, K. C.-C. (2002). Data Mining for Web Intelligence. IEEE Computer,
35(11), 64-70.

Heflin, J., & Hendler, J. (2000a). Dynamic Ontologies on the Web. Paper presented at the the
Seventeenth National Conference on Artificial Intelligence (AAAI-2000), Menlo Park, CA,
USA.

Heflin, J., & Hendler, J. (2000b). Searching the Web with SHOE. Paper presented at the
AAAI-2000 Workshop on AI for Web Search.

Hsu, C. (1998). Initial results on wrapping semistructured web pages with finite-state
transducers and contextual rules. Paper presented at the AAAI-98 Workshop on AI and
Information Integration, Madison, WI, USA.

Kushmerick, N., Weld, D. S., & Doorenbos, R. B. (1997). Wrapper Induction for Information
Extraction. Paper presented at the Intl. Joint Conference on Artificial Intelligence (IJCAI).

Lessila, O., & Swick, R. R. (1999). Resource Description Framework (RDF) Model and
Syntax Specification : World Wide Web Consortium.

McHugh, J., Abiteboul, S., Goldman, R., Quass, D., & Widom, J. (1997). Lore: A Database
Management System for Semistructured Data. SIGMOD Record, 26(3), 54-66.

Vargas-vera, M., Domingue, J., Kalfoglou, Y., Motta, E., & Buckingham Shum, S. (2001).
Template-driven Information Extraction for Populating Ontologies. Paper presented at the
IJCAI 2001 workshop on Ontologies Learning, Seattle, USA.

