

INTELLIGENT INTERFACE AGENT FOR AGRICULTURAL
EXPERT SYSTEMS

Yasser Abdelhamid1 , Ahmed Rafea2 , Nevien Galal3

{Yasser, Rafea, Nevien}@mail.claes.sci.eg

1 Institute of Statistical Studies & Research (ISSR) – Cairo University, Giza, Egypt
2 Faculty of Computer Science & Information – Cairo University Giza, Egypt
3 Central Laboratory for Agricultural Expert systems (CLAES) Giza, Egypt

ABSTRACT

 The acceptance of an expert system by the end user
has been regarded as one of the major criteria of expert
systems success. Expert systems are characterized by its
requirement for heavy and complex interaction with the
end user. This paper introduces an approach for
interacting with multiple expert system applications
through a unified domain-specific intelligent interface
agent. The proposed intelligent interface agent
communicates with different expert system applications
transparently from the end user, and makes the
necessary actions when needed. This approach increases
the usability of expert system applications and
introduces a new methodology for expert systems
development using multi-agent systems (MAS).

The proposed approach has been applied by the Central
Laboratory for Agricultural Expert Systems (CLAES)
where two expert system applications – diagnosis and
irrigation – have been interfaced by an intelligent
interface agent. According to our proposed approach a
number of advantages have been accomplished at both
practical and theoretical levels.

KEYWORDS :Intelligent agents, Knowledge-based
systems, Human-computer interaction, Distributed AI.

INTRODUCTION

 Expert systems in a certain domain are not
completely isolated from each other. It is a fact that one
expert system may require the output of another to
complete its process. For example in the domain of
agriculture a treatment expert system requires the output
of diagnosis expert system in the form of hypothesized
or confirmed disorders. Also, fertilization expert system
requires the output of irrigation expert system in the
form of irrigation schedule in addition to other

information to complete its reasoning process.

To overcome this difficulty, we have two
alternatives. The first alternative is to merge dependant
expert systems so they become one large system, and
this violates the requirement of narrow scope expert
systems; The more narrow scope we have, the more
easily manageable knowledge we can handle. The
second alternative is to ask the user for the required
information by conducting separate sessions with other
expert systems, and this alternative increases the
complexity of interaction with the user.

We believe that we can utilize intelligent agent
technology for solving this problem by developing an
environment that makes the user interacts with multiple
expert systems through a unified intelligent interface
agent.

User interfaces are the most expensive component
of software applications especially expert systems. Our
approach provides the means for building a standard,
and unified domain-specific interface for all expert
system applications of the domain. This dramatically
reduces the overall cost of expert system applications.

As mentioned before, domain-specific expert
system applications are usually dependent on each other.
The proposed intelligent interface coordinates between
these expert system applications transparently from the
user, and relieves him from the burden of
communicating this information between different
expert system applications.

The proposed approach simplifies the design of the
expert system by detaching the user interface
component from other functions of the expert system
application.

Keeping different expert system applications in a
standalone form supports modularity and easy

management of knowledge.

 Eventually, we can add new expert system
applications, that the proposed intelligent interface
agent can provide its services without any change in the
manner of interaction between the user and the system.

INTELLIGENT AGENTS

 An intelligent agent is one that is capable of
flexible autonomous action in order to meet its design
objectives [1]. According to this definition, flexible
means three things:
Reactivity: intelligent agents are able to perceive their
environment, and respond in a timely fashion to
changes that occur in it in order to satisfy their design
objectives;
Pro-activeness: intelligent agents are able to exhibit
goal directed behavior by taking the initiative in order
to satisfy their design objectives;
Social ability: intelligent agents are capable of
interacting with other agents (and possibly humans) in
order to satisfy their design objectives.

Intelligent agents are directed towards a single goal, but
they possess more knowledge about reasoning within
the space of their activity. Knowing when to use other
resources (other agents), the preferences of the user or
client, constructs for negotiation deals, and other
abilities are the marks of an intelligent agent.

MULTIAGENT EXPERT SYSTEMS

In recent years there has been considerable interest
in the possibility of building complex problem solving
systems as a groups of cooperating experts [2]. A
cooperating expert system is composed of a group of
agents, each of which contains an autonomous
knowledge based system. Typically, agents will have
expertise in distinct but related domains. Agents
co-operate together to solve a given problem and
achieve the goals of individuals and of the system as a
whole. An important research project in this direction
was transforming expert systems into a community of
cooperating agents [3] where the aim of this work was
to construct a community of cooperating agents from
two standalone and pre-existing expert systems. This
was achieved by using the GRATE system, which is a
general framework for constructing communities of
cooperating agents for industrial applications. The
cooperating community worked together to diagnose
faults that occurred in the real particle accelerator
process.

INTERFACE AGENTS

Intelligent interfaces are one of the applications of
intelligent agents, through which the software agent
works intimately with the user, functioning as a
personal assistant. An intelligent interface can be
defined as an intelligent entity mediating between two
or more interacting agents who possess an incomplete
understanding of each others’ knowledge and form of
communication [4]. A good interface will lead to better
user/expert system interaction and task performance
[5].

Interface agents employ artificial intelligence

techniques in order to provide assistance to a user
dealing with a particular application [6]. Interface
agents perform different kinds of tasks as they
communicate with their local user or other agents, such
as, information filtering and retrieval, scheduling of
meetings, mail management, etc. There is a distinction
between collaborating with the user and collaborating
with other agents as in the case with collaborative
agents. Collaborating with a user may not require an
explicit agent communication language as the one
required when collaborating with other agents.
Interface agents support and provide assistance,
typically to a user learning to use a particular
application such as a spreadsheet or an operating system.
The user’s agent acts as autonomous personal assistant,
which cooperates with the user in accomplishing some
tasks in the application.

The objective of interface agents’ research is to provide
indirect management for human-computer interfaces.
Current computer user interfaces only respond to direct
manipulation, i.e. the computer is passive and always
waits to execute highly specified instructions from the
user. It provides little or no proactive help for complex
tasks or for carrying out actions such as searching for
information that may take an indefinite time. The goal is
to migrate from the direct manipulation metaphor to one
that delegates some of the tasks to software interface
agents in order to accommodate novice users. The
hypothesis is that these agents can be trusted to perform
competently some tasks delegated to them by their
users.

The main functions of an interface agent include:

1. Collecting relevant information from the user
to initiate a task.

2. Presenting relevant information including
results and explanations.

3. Asking the user for additional information
during problem solving.

4. Asking for user confirmation, when necessary.

The knowledge held by interface agents:

1. A model of the user’s goals and preferences
pertaining to a task.

2. Knowledge of the relevant task assistants that
can perform the task.

3. Knowledge of what must be displayed to the
user and in what way.

4. Protocols for interacting with relevant task
assistants.

AN EXPERT SYSTEM ENVIRONMENT
BASED ON COLLABORATIVE AGENTS

The basic idea of our work is to convert the pattern
of interaction between the user and a number of
knowledge-based systems from that where the user
interacts with each individual knowledge-based system
separately, to another pattern where the user has only
one interface, through which he can interact with
multiple knowledge-based systems without having to
worry about the requirements of each one.
Our approach is to model each KBS in the current
environment as an agent with its own knowledge, and
services. Two other special agents are introduced:
Interface agent, and Coordinator agent. The interface
agent is responsible for managing the interaction
between the user and proposed environment, through
handling request messages asking the user for a
required input, and response messages displaying the
reply. The coordinator is an agent that is intelligent
enough to determine the user requirements by analyzing
the users inputs, and to specify which KBS agent to
contact for achieving these requirements, including
calling intermediate agents for other services.

ARCHITECTURE OF THE PROPOSED
ENVIRONMENT

As shown in Figure [1] the proposed architecture

consists of a number of agents. The following is a brief
description of the components that comprise the
proposed architecture.

Fig. 1 The proposed environment.

User Interface Agent:

The internal structure of the proposed environment
is completely transparent to the user. The only
component that is visible is the user interface agent. The
user interface agent has two main services: the first is to
collect user input in the form of observations, events,
data, or requirements, and sending these inputs to the
coordinator agent. The second service is to receive and
display the replies that could come back from the
coordinator agent.

The Coordinator Agent:

The coordinator has its own knowledge about the
KBS agents in its environment, and the services offered
by each of them. It is stimulated by any message
received from the user interface agent, or any of the
KBS agents. So, any input introduced by the user
interface agent, or a reply from a KBS agent will
activate its inference process. The action of the
coordinator is a message sent to one or more KBS
agents, asking for their services, or a message to the
user interface agent as a result of processing. This cycle
will stop when no more services are required, or there
are no more requests from the user.

KBS Agents:

The KBS agents are the components that are doing
the real work in the proposed environment. In other
words, they are achieving the requirements of the user
in the form of services.

The Database:

The database component is used as a common
store of static data that is often required by KBS agents.
For example, in the domain of agriculture, the database
is used to store data about farms like plantation data,
climate data, soil data, and water data.

AGENT INFRASTRUCTURE

The proposed agent environment presumes an

infrastructure within which the agents operate and
interact. Two major components comprise this
infrastructure: Common Ontology, and Communication
Protocol.

Common Ontology:
 Ontology has been a popular research topic and
has been investigated by several AI research
communities. An ontology is a formal explicit
specification of a shared conceptualization.[7]. The
main role of ontology in the knowledge engineering
process is to provide the vocabulary of terms and
relations used by the knowledge based system.

Making agents understand each other is a major
challenge. Agents may have different meanings for the
same concept, or they may have different concepts with
the same meaning. To overcome this difficulty, there
must be some sort of shared knowledge about the
domain of discourse that made available to all
components in the proposed environment.

In our proposed environment, this shared

knowledge is provided through a common Ontology
that is a set of concepts and attributes, as well as
relations between these concepts and attributes. We
used this ontology as the underlying background
knowledge that is common for all participating agents.

Communication Protocol:

KQML is one of the pioneer research projects in
the field of agent communication languages[8]. KQML
provides a large set of primitives through which agents
may tell facts to other agents, evaluate expressions for
other agents or subscribe to services provided by other
agents. KQML suffers from poorly defined semantics.
As a result, many implementations have been
introduced, but each seems unique. This makes
communication difficult, and KQML agent may not be
understood.

Arcol is another ACL based on speech acts[9], [10].
Arcol was the basis for the first version of the proposed
standard of the Foundation for Intelligent Physical
Agents (FIPA), and many of its components survive in
the second version as well. Agents conforming to the
FIPA specification can deal explicitly with actions.
They make requests, and they can nest the speech acts.

In our proposed environment, we use HTTP as the
underlying transport protocol, and we use XML
language to formulate messages passing between
different agents. According to this approach, messages
are not tied to a particular implementation, and basically

we are not in need to implement a standard
communication language like KQML.

DESIGN OF THE PROPOSED
ENVIRONMENT

After we have had a general idea bout the
proposed approach, and the overall architecture of the
proposed agent environment. The following is a
detailed discussion of the components constituting the
environment.

User Interface Agent:

The user interface agent has two sub-components;
request model, and response model. The request model
formulates the list of inputs that the user can provide
during the session. The expected inputs are derived
from the common ontology used by the
knowledge-based system agents in the form of
properties related to some concepts in the domain of
discourse, and the acceptable values for each of these
properties.

At any time during the session, the user can use

this unified interface to convey some inputs to the
system. These inputs can be events like rain or wind,
observations on the plant like leaf color or root shape,
current date, etc. The user doesn’t know which
knowledge-based system will reply to these inputs, or
which will provide its services. Finally, the request
model submits the user inputs to the coordinator agent
in a request message.

The response model collects and displays the
results or replies coming from the coordinator agent as a
reply from one or more knowledge-based system agents.
These results and replies can be classified into one of
the following categories:
� Predicted disorder name(s).
� Confirmed disorder name(s).
� Treatment materials, quantities, dates and

methods of using these materials.
� Irrigation schedule or part of it.
� Fertilization schedule or part of it.
� A plant care operation to be done.

The Coordinator:

As shown in Figure [2], the coordinator manages
the interaction between the user through the user
interface agent, and the different knowledge-based
system agents in the environment. This is done through
messages sent to the various agents requesting for some
service, or supplying some information back to the user
interface agent.

The coordinator has the knowledge that makes it
able to decide which service to be requested for the
current session. This knowledge is represented as rules
that work on the current property values stored in the
working memory, and maps them to one or more
services provided by other agents. Figure [3] displays a
sample of this knowledge represented in XML format.

Fig. 3 Sample of coordinator knowledge.

The coordinator interacts with the
knowledge-based system agents in the following
manner:
1. First, the coordinator formulates the input data

existing in the working memory into an
appropriate request message and sends it to the

related agent(s). Request
2. Second, it receives the reply messages from

participating agent(s), updates the working
memory and starts a new cycle of sending new
messages to the same or other agents if needed, by
redirecting the results to them.

Coordinator

Agent

KBS
Agent

User

Interfa

ce

Send Response

3. Third, it sends the final results to the user through
the user interface agent in the form of response
message.

Request
Final

Output
 KBS

Agent Figure [4] displays a sample message sent to
diagnosis agent. As we can see, the message has three
parts, Header, Body, and Fault. The Header contains
information about the sender, receiver agent, and the
requested service. The Body contains working memory
contents related to the designated agent. The Fault
element is used to provide information about errors that
occurred while processing the message. By nature this
element can only appear in answers (response
messages).

Response

Fig. 2 The coordinator agent.

KBS Agents:

In our proposed environment, we imposed a
certain structure on KBSs to achieve our goal for
supporting intelligent communication between them.
The main architecture of the KBS agents is:
The knowledge base: Which in its turn consists of
Domain concepts, and Domain relations:

Domain concepts are structured collections of
domain terms (e.g. concept and its properties and
values). Concepts can have properties that are
defined through their names and the values that
they can take.
 <Agent Name="diagnosis">

 <Tuple Cpt="leaves_observations" Prop="color/”>

 <Tuple Cpt="leaves_observations" Prop="shape/">

 <Tuple Cpt="stem_spot" Prop="exist/">

 <Tuple Cpt="stem_observations" Prop="shape/">

 <Tuple Cpt="fruit_observations" Prop="color/">

 <Tuple Cpt="fruit_observations" Prop="shape/">

</Agent>

Domain relations represent the relation between
concepts/properties defined in the domain of
discourse, these relations are represented in the
form of: Rules, tables, or functions.

Services: Which are the functions that the
knowledge-based system agent provides. Each service
has a unique name, percepts which are the inputs
needed to stimulate the service (indicate when that
service should be activated), and output of that service.

<Message>
<Header>
 <From>Coordinator</From>
 <To>Diagnosis_Agent</To>
 <Service>Generate_Hypothesis</Service>
</Header>

<Body>

<Tuple Cpt="Leaves_observations"Prop="color" Val= “Brown”/>
<Tuple Cpt="Stem_Observations" Prop="Shape" Val= “etiolated”/>
<Tuple Cpt="Stem_Spot" Prop="Exist" Val= “yes”/>

</Body>

<Fault>

</Fault>

</Message>

Fig. 4 A sample diagnosis agent message.

KBS agents are implemented as COM (Component
Object Model) objects, so they can be accessed as web
services. A number of methods have been added to
these components so that knowledge base can be
manipulated easily.

CASE STUDY

As we have mentioned early in this paper, the
proposed architecture has been tested in the domain of
agricultural expert systems. Two expert system agents
have been implemented: Irrigation agent, and Diagnosis
agent for cucumber cultivation under tunnels.
 The irrigation agent calculates water requirement
for the plant, and generates partial and full irrigation
schedules. It is worth mentioning that some
circumstances may drive the irrigation agent to revise
its previously suggested irrigation schedule, like
changes in the weather or having certain disorders.

The diagnosis agent analyses the input
observations and farm data, and provides the user with
information about the possibility of having a certain
disorder(s), and according to extra information provided
by the user, the diagnosis agent may confirm the
existence of one or more of these disorders. Other
agents (treatment agents) can be developed for
providing suitable treatment schedules for the
confirmed disorders specified by the diagnosis agent.

As shown in Figure [5], the user provides basic
information about the case, in addition to some
observations that according to the diagnosis agent’s
knowledge are manifestation for some disorders. At this
point, only diagnosis agent is involved, and replies with
the names of suspected disorders.

Fig. 5 Selecting an existing farm.

As shown in Figure [6], with extra observations

provided by the user, the diagnosis agent will have the
possibility of confirming one or more of these suspected
disorders.

The coordinator agent receives the initial results of
the diagnosis agent, and passes the results to other
agents, in our case, the irrigation agent.

According to the irrigation agent’s knowledge, the
confirmed disorder may affect the quantity or schedule
of irrigation. So, it revises the proposed schedule, and
passes it back to the coordinator agent.

Fig. 6 The details of predicted disorders.

The coordinator agent tries to route the new

information to expert system agents again, but this time
no one replies.

Fig. 7 The final results.

The coordinator agent considers this as a final

reply, and reports it back to the user interace agent.

As shown in Figure [7] The user interface agent
displays the results to the user with a fully detailed
report coming from all agents involved in the session.

CONCLUSION

In this paper we have presented an agent-based
architecture that enables knowledge-based system users
to interact with a number of knowledge-based system
applications through an intelligent interface agent.

Through the analysis and evaluation of the
implemented prototype, we have come up with the
following conclusions:

Using the presented architecture, the user deals
with multiple knowledge-based systems as if they were
only one. This approach helped in reducing the
interaction between the user and the knowledge-based
systems, by making the coordinator agent take over this
interaction on behalf of the knowledge-based system
user.

Building this standard and unified interface
simplifies the design of knowledge-based systems by
separating between the interface design and other
functions of the system and provides a unified model of
interaction between the user and KBSs without having
to merge these KBSs into one large, hard to manage
KBS.

The proposed architecture is open, in the sense that
we can add new knowledge-based system agents
without any change in the manner of interaction
between the user and the proposed intelligent interface
agent.

The proposed architecture is reusable, since we
can apply the same environment on different domains of
applications.

REFERENCES

[1] Wooldridge M. (1999). "Intelligent Agents", In G.
Weiss, editor: Multi-agent Systems, The MIT Press.

[2] Jennings N. R., and Wooldridge M. (2001).
“Agent-Oriented Software Engineering”, Handbook of
agent technology, ed. J. Bradshaw, AAAI/MIT Press.

[3] Jennings N. R., Varga L. Z., Aarnts R. P., Fuchs J.,
and Skarek P. (1993). “Transforming Standalone Expert
Systems into a Community of Cooperating Agents ”,
Engineering Applications of Artificial Intelligence, 6 (4)
1993, 317-331.

[4] Chen C., and Roy R. (1998). “Knowledge-based
system Technology: Knowledge-based system
Interface”, in The Handbook of Applied
Knowledge-based systems, Chapter 6, edited by
Liebowitz, J.

[5] Kuo-Wei Su, hu-Hua Liu, and Sheue-Ling Hwang
(2001). “A developed model of expert system interface
(DMESI)”, Expert systems with Applications (20), pp.
337-346.
[6] Maes P. (1994). " Agent That Reduce Work and
Information Overload", Communications of the ACM,
37(7), pp. 31-40.

[7] Gruber T.R. “A Translation Approach to Portable
Ontology Specifications”, Knowledge Acquisition 5 (2),
1993, pp. 199-221.

[8] Finin T., Weber J., Wiederhold G., Genesereth M.,
Fritzson R., Mckay M., McGuir J., Pelavin R., Shapiro
S., and Beck C. (1993). " Specification of the KQML
Agent-Communication Language", By The DARPA
Knowledge Sharing Initiative External Interfaces
Working Group.

[9] Breiter P., and Sadek M. D. (1996). “A rational
agent as a kernel of a cooperative dialogue system:
Implementing a logical theory of interaction”. In ECAI
Workshop on Agent Theories, Architectures, and
Languages. Springer-Verlag, Heidelberg, Germany,
pp.261-276.

[10] Sadek M. D. (1991). “Dialouge acts are rational
plans”, In Proceedings of the ESCA/ETRW Workshop
on the Structure of Multimodal Dialogue, Maratea, Italy,
pp. 1-29.

	INTERFACE AGENTS
	KBS Agents:

	CASE STUDY
	
	Fig. 5 Selecting an existing farm.
	Fig. 6 The details of predicted disorders.

	CONCLUSION
	REFERENCES

